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Abstract—In traditional computing systems, software
problems are often resolved by platform restarts. This
approach, however, cannot be naively used in cyber-
physical systems (CPS). In fact, in this class of systems,
ensuring safety strictly depends on the ability to respect
hard real-time constraints. Several adaptations of the
Simplex architecture have been proposed to guarantee
safety in spite of misbehaving software components.
However, the problem of performing recovery into a
fully operational state has not been extensively ad-
dressed.

In this work, we discuss how resets can be used in
CPS as an effective strategy to recover from a variety
of software faults. Our work extends the Simplex ar-
chitecture in a number of directions. First, we provide
sufficient conditions under which safety is guaranteed
in spite of fault-induced resets. Second, we introduce
a novel technique to express not only state-dependent
safety constraints, as typically done in Simplex, but
also time-dependent safety properties. Finally, through
a proof-of-concept minimal implementation on a small
R/C helicopter and simulation-based system modeling,
we show the effectiveness of the proposed recovery strat-
egy under the assumed fault model.

1. Introduction

There are an increasing number of CPS applications in
almost all the vital infrastructures of our modern society.
Such systems often have a set of safety requirements that
need to remain satisfied at all times because a violation
could have catastrophic consequences. However, software
components can exhibit unexpected deviations from the
intended behavior due to bugs, potentially violating the
safety requirements. Unfortunately, formally assessing the
correctness of software components is a hard problem since
the existing approaches currently require a large amount of
effort (cost) as well as specialized knowledge which is not
yet widespread.

The difficulty of producing 100% correct software is
a strong incentive to develop techniques to enforce safety
requirements in CPS in spite of unexpected misbehavior.
However, safety is not the only goal of a CPS, also the capa-
bility to remain in a fully operational state is of paramount
importance. Techniques designed to maintain safety have
received substantial attention in the literature |1]—(7]. In
comparison, the problem of restoring nominal operation
for a CPS has received little attention. In this work, we
improve the state of the art of safety enforcement for CPS
and discuss the use of resets as a strategy to fully recover
from transient faults.

The Application-level Simplex architecture, proposed in
[1]-4], represents a well-known method to provide safety
guarantees for CPS. In the Simplex architecture, a verified,
simple safety controller ensures the stability of the plant.

This conservative safety controller is complemented by a
high-performance complexr controller. A decision module
continuously evaluates the safety properties and forwards
actuation commands from the complex controller whenever
the system operates within the safety margins. If a mis-
behavior is detected from the state of the plant, control
is transferred to the safety controller. This prevents the
occurrence of faults within the complex controller from
compromising the safety of the plant. The main issue with
the Application-level Simplex is that safety and complex
controller are implemented as two applications on the same
platform. Hence, in presence of platform-level faults, there
is no guarantee of correct behavior from the safety con-
troller. The issue is addressed in the System-level Simplex
architecture [7] by moving the safety controller and the
decision module into a dedicated processing unit. The
safety controller in both the Application- and System-level
Simplex has safety boundaries that are typically pessimistic
and statically computed at design time. The work in [5]
demonstrated that real-time reachability analysis can be
employed to relax such static constraints. In fact, a plant
can be allowed to abandon its safety boundaries as long
as (i) no constraints are violated, and (ii) the state can be
guaranteed to re-enter the safety region.

In this paper, we build upon the work in [5] and improve
over System-level Simplex [7] in two main directions. First,
to the best of our knowledge, we are the first to extensively
discuss how platform-wise resets can be employed in CPS
as a way to (i) perform fault recovery and to (ii) restore a
full operational status. Second, we extend real-time reach-
ability to check safety properties that depend not only on
the current state of the system as originally proposed in [5],
but also on its history.

In order to evaluate the validity and feasibility of the
proposed strategy, we conduct a case study using a radio-
controlled helicopter testbed. For our study, we use sensor
traces acquired in flight while manually injected faults trig-
ger platform-level recovery through resets. The acquired
data is used to tune and validate our helicopter model.
Next, we perform simulation-based analysis of the com-
plete system based on the validated model. Our results
show that: (i) restarting represents a feasible fault recovery
approach; (ii) it is possible to formulate system constraints
so that static and time-dependent safety constraints are
respected despite the occurrence of resets; and (iii) if the
frequency of faults is not too high, the proposed recovery
methodology has a negligible impact on system’s perfor-
mance.

This paper is organized as follows. A brief review of
the related works is presented in Section [2} In Section
we formalize the two categories of safety guarantees that
our design can provide. In Section [ a background on the



Simplex architecture is presented. Section [5], provides the
overall design. The evaluation on the helicopter system is
provided in Section [} Section [7] concludes the paper.

2. Related Work

Restart based strategies are generally divided into two
categories, revival, which is to reactively restart a failed
component, and rejuvination, which is to prophylactically
restart functioning components to prevent state degrada-
tion. [8] introduces recursively restartable systems as a
design paradigm for highly available systems and uses a
combination of revival and rejuvenation techniques. Au-
thors in [9]—|11] propose the concept of microreboot which
consists of having fine-grain rebootable components and
trying to restart them from the smallest component to
the biggest one in the presence of faults. Some works have
focused on failure and fault modelling [12]-[14] and try to
find the optimal rejuvenation strategy. Authors in [15], [16]
propose an auditable restoration for distributed systems.
These techniques are proposed for traditional computing
systems and are not applicable to CPS. In |17], authors
propose improving reliability of real-time control systems
by executing simultaneous task replica of varying complex-
ity. When a task fails, one of the shadow tasks can provide
the output while the failed task is restarted to a clean state.
However, this system has no mechanism to guarantee any
system constraints. To our knowledge, this is the first work
to extensively consider enabling systematic restart-based
recovery with safety guarantees for CPS.

3. System Constraints

The safety requirements of a system are conditions that
need to remain satisfied at all times during system opera-
tion. In this work we consider two categories of constraints:
Hard Constraints and Quverrun Constraints.

Hard Constraints are expressed in the form of hard,
physical constraints over the system’s state space. When
considered together, they determine the feasible regions of
the state space where the system can operate. Each hard
constraint is presented as a linear inequality of the form
al -z <1, where z € R" is the vector of state variables
of the system and a,, € R” is a vector of constants. For
instance, for a helicopter, a hard constraint is imposed on
the altitude to prevent a crash.

On the other hand, Overrun Constraints are defined
on the trajectory of the system over time. An overrun
constraint has the following form:

t_,’_Twin
Vt;/ Stress(z(7)) - dr < C (1)
¢

Here “Stress” is a non-negative function that defines the
amount of instantaneous stress on the system for a given
state, x. C is the maximum amount of accumulated stress
that is allowed over any time window of length 7%*". Hence,
each overrun constraint with index k is specified by the
tuple (Stressy (), Cy, T0™).

For example, the propulsion system is limited by its
ability to dissipate heat. Consequently, motor datasheets
specify the maximum time the motor can be operated at

full power. For instance, the maximum duration allowed
for “Hacker” brushless motors to operate at full power is
15 seconds [1§], [19]. this can be implied as

Stress(p) = { L p>pn

416
0 p<p Vt;/t Stress(p(7)) - dr < 15

where p represents the instantaneous propulsion power and
pp, the threshold for full power level.

The combination of all the constraints, is referred to as
System Constraints. The goal of design verification tech-
niques for CPS is to ensure that all the system constraints
are met throughout operation.

4. Background on Simplex Architecture

The goal of using Simplex architecture, originally pro-
posed in [1]-[4], is to enable a system designer to use an
unverified controller on the system while ensuring the same
safety guarantees that a verified safety controller would of-
fer. The safety controller is designed by approximating the
system with linear dynamics in the form: & = Ax + Bu, for
state vector x and input vector u. In this approach, safety
constraints are expressed as linear constraints in an LMI
form. These constraints, along with the linear dynamics for
the system, are the inputs to a convex optimization prob-
lem that produces both linear proportional controller gains
K, as well as a positive-definite matrix P. The resulting
linear-state feedback controller, u = Kz, yields closed-loop
dynamics in the form of & = (A + BK)z. Given a state z,
when the input Kz is used, the P matrix defines a Lya-
punov potential function (z? Pz) with a negative-definite
derivative. As a result, the stability of the linear system
is guaranteed using Lyapunov’s direct or indirect methods.
Furthermore, the matrix P defines an ellipsoid in the state
space where all constraints are satisfied when 27 Pz < 1. If
sensors’ and actuators’ saturation points were provided as
constraints, the states inside the ellipsoid can be reached
using control commands within the sensor/actuator limits.

It follows that the ellipsoid of states, R = {x|2T Pz <
1}, is a subset of the recoverable states. As long as the
system’s state remains inside of the ellipsoid, the system
will be driven toward the equilibrium point, i.e. where
zTPx = 0, when control is handed over to the safety
controller. Since the potential function is strictly decreasing
over time, any trajectory starting inside R will remain there
for an unbounded time window. Therefore no unsafe states
will ever be reached as there are no such states in R.

5. Methodology

In this section we describe our design methodology. The
core of this design is the Simplex Architecture which was
reviewed in section [d] Our first goal is to extend Simplex
to provide runtime guarantees for hard constraints and the
additional category of overrun constraints in spite of faults
in complex controller. The second goal is to allow recovery
from faults through platform-level restarts.

Our design is comprised of a verified, simple Safety Con-
troller (SC), an unverified Complex Controller (CC), and
a real-time reachability module (RTR). The architecture is
depicted in Figure[I] Thanks to the properties discussed in
Section [ and the design methodology in section SC



should always be able to stabilize the system. SC, there-
fore, is set as the default controller of the physical plant.
The real-time reachability module (RTR), on the other
side, periodically checks whether the safety requirements
of the system remain satisfied under all possible control
commands of the CC. If all these conditions hold, CC would
safely be left in charge of control for the next cycle. This
approach prevents logical bugs in the CC from violating
any of the system safety constraints.
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Figure 1: Restartable Simplex architecture with dedicated
safety controller hardware unit.

Furthermore, in this design, SC is implemented on a
dedicated hardware unit and control is automatically trans-
ferred to the SC while the main computation unit under-
goes a restart. This prevents the SC from being affected by
faults on the elements of the main unit. The mechanism to
reliably switch between controllers is enabled by a fail-safe
switch (FS). The input to the FS is the FSEnable signal,
which can assume three values: active low, active high, or
invalid. The FS selects control commands from the CC if
it receives an active high FSEnable signal. Conversely, if
the input is active low or invalid, which is the case during
the restart of the main unit, the FS selects the SC as the
control unit. This approach constitutes a reliable way to
immediately put the safety controller in charge when the
main unit is undergoing a restart. Under this design, the
system remains stable no matter what the frequency or
the length of resets is, because the SC is able to maintain
stability for arbitrarily long time intervals.

In this paper, the assumed fault model for the RTR
modules is fail-stop and for the CC is Byzantine. We rely
on hardware watchdog timers to ensure that the main unit
will restart after any fail-stop failure. Periodic, controlled
resets or any strategy based on misbehavior detection per-
formed by the RTR module can be employed to recover
main unit from Byzantine failures.

This architecture is similar to what was proposed in
our previous work, System-level Simplex [7]. System-level
Simplex, however, exploits this hardware redundancy to
protect the system against the faults that may occur in
the underlying layers of system such as the OS.

In the rest of this section, we explain in detail how each
component should be implemented and how the proposed
architecture meets our design goals.

5.1. Safety Controller (SC) Design

SC is a simple verified controller that is responsible for
ensuring that hard and overrun constraints are satisfied. In
our approach, (i) we first find a region of states such that,

for any trajectory taken by the system inside this region,
all the constraints remain satisfied. Next, (ii) we design the
SC such that it can keep the state inside this region for an
unbounded amount of time as long as the starting state is
inside the region. In order to do this, we first express all
the constraints as linear inequalities. Then we use a LMI
solver to derive a feedback controller with the discussed
properties.

Hard constraints, as described in Section [3] are already
in the form of linear inequalities. Hence, for a system with
q hard constraints, we can easily define a region S such
that all the hard constraints are satisfied:

S={zlal -x<1,m=1,...,q} (2)

For an overrun constraint, the integral constraint is con-
verted to an instantaneous constraint by defining region O
such that:

O = {z|Stress(z) < (1 — a)C/T™"}. (3)

The integration of Stress(z) over any trajectory of length
Tv" inside O would remain less than the maximum per-
mitted accumulated stress, C. Here, a is the Manoeuvra-
bility coefficient and is 0 < o < 1. The choice and impact
of a will be further discussed in the context of Lemmal[ll It
can be easily shown that for any trajectory of length 7"
inside the region O, the overrun constraint holds:

T _ }
Vt;/ Stress(z(71)) - dr < (1=a)C x TV < C (4)
¢
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However, in order to use the region O in a LMI-solver,

we choose p linear inequalities to determine a convex sub-
set, Conv(O) C O such that:

Conv(0) = {z|¢] -z <1,i=1,...,p} CO

Since linear matrix inequality can only handle linear
systems, we also need to restrict the system with actuator
saturation limits (so that actuation values do not saturate
the actuators). Therefore, assuming that v € R™ is the
control signal to the actuators, saturation limits can be
expressed as:

bl cu<lj=1,...,r

For a system whose dynamics are described by & =
Ax + Bu, the SC is a linear state feedback control given by
u = Kz. The feasible region I' of the system with ¢ hard
constraints, p overrun constraints (each overrun constraint
itself has p; linear inequalities) and r actuator constraints
can be described by:

I={zlal - 2<1,m=1,...,q,
C;T’:k~x§l,kzl,...,pi,izl,...7p, (5)
T .
bj ru<l,j=1,...,r}
Note that ' € S, I' € O, and I' embeds saturation
limits. Now, we can use a LMI solveIE| to find T, the gain
matrix K of SC (SC is a state feedback controller), and

the matrix Q. The latter matrix @ is found such that the
Lyapunov potential function V(z) = 27Q 'z constructed

1. This is a standard minimization problem and can be solved using
the approach proposed in the second appendix of the technical report
in [20].



for the system under the feedback control of K (i.e. & =
(A+ BK)z) has negative-definite derivatives in the region
R = {z|lzTQ 'z <1} CT.

We refer to R as the Stability region. Due to the
negative-definite derivatives of V(x) inside R, any trajec-
tory starting in R will remain in R indefinitely.

5.2. Real-Time Reachability Module (RTR)

We know that the SC can stabilize the system and
guarantee all the constraints as long as the state of the
system is inside R. The goal of RTR module is to allow
the system to operate beyond the boundaries of region R.

In this section, we derive a set of conditions that if
satisfied at the beginning of a cycle, hard and overrun
constraints are guaranteed to remain satisfied throughout
that cycle under any behavior of the CC. At every cycle T,
RTR checks if those switching conditions hold (Theorem
and . If they do, the CC is allowed to control the system.
Otherwise, SC will be in charge.

Next, we describe the modifications of the implementa-
tion of the RTR module, with respect to [5], that are re-
quired to check the switching conditions for the additional
category of overrun constraints.

In the rest of this section, we use Reach_p(z,C) to
denote the set of states reached by system from an initial
set of states = after exactly T seconds have elapsed under
the control of controller C. Reach<r(z,C) can be defined
as UtT:() Reach—;(z,C). In order to compute the reach set,
we use a modified version of the the face-lifting technique
in [5]. We described our technique in Section

5.2.1. Switching Conditions for Hard Constraints.
Consider T, the control interval and T an arbitrary settling
time for the system after a restart.

Theorem 1. The hard constraints of the system will always
remain satisfied under the control of CC, if at every control
interval, T, the following conditions hold:

1) Reach<r, (x,CC)CS;

2) Reach<t,(Reach<t,(z,CC),SC) CS;

3) Reach—r,(Reach<r, (z,CC),SC) CR.

Proof. Due to space limitations, we hereby provide an intu-
ition of the proof. For the full proof, refer to the technical
report [21]. Condition [ implies that all the states that
can be reached under the CC within the next control cycle
satisfy the hard constraints. If a switch to SC is triggered
at any moment within the next control cycle, Condition 2]
ensures that from the time of switching, for an interval
of length T, the system will not violate any of the hard
constraints. Finally, Condition [3] implies that by the end
of T, the system is inside the stability region where the
hard constraints will remain satisfied indefinitely. O

5.2.2. Switching Conditions for Overrun Con-
straints. We assume that switching conditions for overrun
constraints are checked only if the switching conditions for
hard constraints are already satisfied. Therefore, Condi-
tion [3] in Theorem [1] implies that if a switch to SC occurs
within the upcoming T, time units, the SC will be able
to safely bring the system back into the stability region
within at most T, time units. Hence, all the trajectories

that satisfy the hard constraints have a form such that
there is a time point ¢5 at which the trajectory enters the
stability region R while the SC controller is in charge.
For such trajectories, Lemma [1| implies a general condition
under which a given overrun constraint remains satisfied
throughout the execution.

Lemma 1. Assume an arbitrary trajectory that at some
point in time, ts, enters the stability region R while the SC
1s the active controller from that point forward. An overrun
constraint is satisfied throughout such a trajectory if the
following condition holds:

) t-‘rTwi"
Vit € [0,ts — T : / Stress(z(7)) - dr < aC (6)
t

Proof. Here, « is the same maneuverability constantE| used
in design time of SC. Due to the lack of space, the proof is
provided in the technical report [21]. O

Lemmal[l] implies a general condition for a trajectory to
satisfy overrun conditions. However, switching conditions
need to be time-discrete in order to be checked by the RTR
module in every cycle. Theorem [2] provides a way to derive
discretized safe switching conditions based on Lemma [I]

Theorem [s key idea is to track the accumulated stress
during the past T%" — (T, + T) time window. Next, we
compute the maximum of the sum for the stress that could
be accumulated over the future interval of length T, + T5.
This represents the worst-case accumulated stress from the
current time until SC can bring back the system inside the
stability region. Intuitively, if in total the worst-case future
stress and the accumulated (past) stress are below the
limit of the overrun constraint, the condition is satisfied.
Otherwise, RTR will need to trigger a switch to SC.

Theorem 2. Assuming that T*™ > Ty + T., an overrun
constraint will always remain satisfied under the control of
CC, if at every control interval j the following condition
holds:

(MaxSumStress,([p- T¢, (p + 1) - T.]))
p=j—(R+(M-1)-L)
+MaxSumStress, ([(j + 1) - T¢, Ts]) < aC
(7)
Here, MaxSumStress, ([t1,?2]) is a function defined to

over-approximate the sum of stress over the trajectory in
the interval of [t1,t3]. It is defined as:

ta
/ Stress(z(7)) - dr < MaxSumStress, ([t1, to])

=t
Additionally, we define L, @), and R as follows:
TV — (Ts + T) J :
ot [g) oo

Here M is the length of the array we use to keep track
of past stress, in which an element stores the cumulative
stress over L consecutive control cycles.

2. The Maneuverability Coefficient is a design parameters such that
0 < a < 1. The choice of a larger a can increase the stability region
of the SC. At the same time, it makes the conditions of Theorem |Z|
harder to satisfy, resulting in more frequent switches from CC to SC.
Thus, a needs to be chosen carefully to balance this trade-off.



Proof. Due to the lack of space the proof is provided in the
technical report [21]. O

Figure [2] illustrates how Theorem [] can be applied to
the system. In this example, the goal is to guarantee that
the accumulated stress over any window of size 147, will
not exceed a fixed threshold. The future time required for
the system to settle in the R is T, + Ts = 3T.. Hence, we
need to compute the stress over the future 37, plus the
stress over the past 117, time units. The sum of the values
from PS[1] to PS[4] in memory provides the accumulated
stress over the past 14 cycles (i.e. from 87, to 22T), which
is an over-approximation of what required (11 cycles).

TVin= 147,

L=4 : R=2
—A—
10/3]5]4]7]9]11]3]7]0]1]1g
-ttt °r 1ttt & 1 & 1 ©° @[ @[ [ 1 1 1T * 1 1 1T 7T"I
0 T 2 3. 4T SI. 6T 7T ST, O 0L 1T, 12[ 13T, WT 1T, 16T, \TT. 18T, 19 200 2T, 2L NI, AT, 25T,

Y
Q=5

PS[1]=24 PS[2]=15  PS[3]=23 PS[4]=1£:§ future
PS: PastStress Array | i

Array Size = 4 || T, = 147, || T, =27, || Current Tme.j= 22 |

Figure 2: An example to clarify Theorem Each element
shows the maximum cumulative stress within that control cycle.

5.2.3. RTR Module Implementation. The structure
of the main loop of the RTR module is presented in Al-
gorithm [} Only a single overrun constraint is considered.
Each iteration of the while loop in Algorithm [I] performs
the required computation for a single control cycle.

ALGORITHM 1: RTR module execution flow

1 Algorithm RTRModule ()

2 set R = 0 and initialize all elements of array PastStress to
MAXDOUBLE
3 while true do
4 state’ ! = readCurrentStateFromSensors /*At the
beginning of j-1th control cycle*/
5 CCcommand = Control Command applied at j-1th cycle
6 statej, MaxSumStress”’ ! =

Reach_r, (state? ', CCcommand)
PastStress[M] += MaxSumStress

SumOfPastStress = Sum all elements of PastStress
J

J—1

® N

9 reachCC, MaxSumStress” =
Reach<r (state’, CC, SumOfPastStress)
10 reachSCAtTs, - = Reach_r, (reachCC, SC)
11 reachSCBeforeTs, sumStressUntilSettling —
Reach<, (reachCC, SC)
12 If R == L Then Shift PastStress to left; set R = 0 ; End
13 /*At the end of j-1th control cycle*/
14 If SumOfPastStress + MaxSumStress’ +

sumStressUntilSettling < aC and reachCC C S and
reachSCAtTs C R and reachSCBeforeTs C S then Put CC
in charge; else switch to SC; End

15 R++ and Update WD timer.

16 end

Here j is the cycle for which the RTR module needs
to determine whether the switching conditions hold or not.
The decision of the RTR module needs to be ready at the
beginning of the cycle j. Hence, those conditions need to
be assessed during the previous cycle, j — 1. Algorithm
uses the state at the beginning of (j — 1)** cycle (line [4)),
as well as the exact control command generated at the
beginning of (j — 1)** cycle (line to find the state’
which is the reachable set of states at the beginning of j
(line @ PastStress is an array of size M to keep track of

the stress during the past cycles. In each iteration, before
evaluating the conditions for cycle j, the MaxSumStress is
computed over the (j — 1)** cycle and added to the last
element of PastStress (line .

Next, the reachable sets required to check Conditions
in Theorem [I] for cycle j and also the accumulated stress
during the j* cycle and until the settling time are com-
puted (lines and . Finally, in line [14{ the algorithm
checks weather all the constraints are met. In case they are
all met, control commands from CC are forwarded to the
actuators, otherwise SC is selected to control the system.

The function Reach, used in Algorithm [I] implements a
modification of the face-lifting real-time reachability algo-
rithm originally proposed in [5] to compute the maximum
cumulative stress (MaxSumStress) over a given time, in
addition to the reachable set of states. Here, an intuition
of how function Reach is implemented is provided. For
the full details, however, refer to our technical report [21].
The representation used to track the set of states for real-
time reachability is a single n-dimensional hyper-rectangle
(box), where n is the number of state space variables. The
way the set of states changes over time is only based on
the derivatives near the boundaries of the tracked set of
states. In this technique, a set of states is tracked at specific
snapshots in time. Time is iteratively advanced (by some
time step) from the initial states, which changes the set of
states being tracked, until the desired final time is reached.
In order to compute the accumulated stress, we require
the system designer to provide a function, StressMax, for
each overrun constraint that returns the maximum value
of Stress function over a hyper-rectangular region (box)
of states. In every intermediate step of Reach function,
maximum value of Stress function over the intermediate
reachable box is derived using StressMax. The upper-
bound on accumulated stress is found by multiplying the
maximum of Stress by the length of the intermediate time
interval.

6. Evaluation

In this section, we present the proposed architec-
ture’s evaluation architecture. We demonstrate robustness
against faults and timely recovery of a RC helicopter sys-
tem through a combined testbed evaluation and simulation-
based system modelling.

6.1. Model Development and SC Design

For the helicopter system, the goal is to design a SC
that can maintain the following constraints. The safety
constraint is to maintain a minimum altitude of 10 meters
from the ground (i.e. not crash). The overrun constraint
for this system is on the amount of time that the vertical
velocity (velocity over z-axis) is higher than 3 m/s seconds.
This velocity shall not be maintained for more than 15
seconds within any time window of length 60 seconds:

1 2>3

t+60
0 <3 ,Vt;/t Stress(2(7))dr < 15

Stress(2) = {

6.1.1. Model Dynamics and Linearization. The
model and the linearization method in this section is ob-
tained from the aerospace literature and has been proposed



and utilized for helicopter controller design in [22]—[25]. Due
to the space limitations, we omit the details of the model
and linearization approach. For the full details refer to our
technical report [21].

In this model, control authority for the helicopter is
obtained via lift, generated by the main and tail rotors.
The main rotor lift is decomposed into three components
(—wa,wr,u) and the tail rotor force into one component
(0, —ws3,0), all in the body-fixed frame. In our notation, we
use m, g, and c¢ to indicate mass, gravitational constant
and equation constants, respectively. The terms p and
7 represent the target vertical rotor force and heading
angle, while the commands produced for the main and
tail rotor are denoted as w and 7 respectively and are
defined in Equation The full helicopter dynamics in
the generalized coordinates are derived from the Euler-
Lagrange equations.

. —W?2 0
m{=R| wi—ws | + 0 (8)
—u mg

here, £ = (z,y, z) are the coordinates in the 3D space, and
n = (¢,0,%) represent the classical Euler angles, ’yaw’,
'pitch’, and ’roll’. C(n,7) and R refer to the Coriolis matrix
and the orientation matrix of the helicopter, respectively.

To satisfy the safety constraints, we set the SC’s goal
to stabilize the altitude (2 = 0) and to level the helicopter
(¢ =0,0 =0, =0). We set the linear domain such that
the absolute value of the components of 7 are smaller than
/3. We use the following control transformation:

LT
ey
The explicit form for the linearized system where small
body forces (e.g. friction, air drag) are neglected is:

T =C(n,n)n+Ir. (10)

2_:1}2; Uz:_;u ¢7:’Y7 7:%¢ (11)
b=w, G=F =\ A=1y

The above equations can be represented as & = Az+ Bu
where @ = [z,v,,¢,7,0,w,9%, N7 and u = [u, 74, 79, 7] T
Now, we design the state feedback controller of u = Kz.

6.1.2. Safety and Overrun Constraints. The hard con-
straint on the minimum height can be expressed as a linear
inequality as: a; = [1/10,0,0,0,0,0,0,0]%. For the overrun
constraint, we consider a maneuverability coefficient aw = 1.
Hence, Equation |3 can be written as

O = {z|Stress(z) <0} = Vr € O,v, =2 <3

It follows that linear inequality resulting from the above
constraint is: ¢; = [0,1/3,0,0,0,0,0,0]7.

6.1.3. SC Design. The goal is to design a SC which is able
to satisfy these constraints. First, the linear model used for
the system is only valid in the region |¢|,|0], || < 7/3. In
order to ensure that the system remains in this region, we
add the following constraints:

az = —as = [0,0,3/7,0,0,0,0,0]T
as = —as = [0,0,0,0,3/7,0,0,0]T
ag = —ar = [0,0,0,0,0,0,3/7,0]T

Denoting with ., the saturation limit for the lift power
of the main rotor, we have © < cyCoUmar — 1. For the
region [¢)|, |8] < m/3 we can write u < cos(7/3) Upmar —1 =
Umaz /4 — 1. We define fimaz = tmar/4 — 1. Thus we have

bl - _b2 = [1/Nmazv 07 07 O]T
Finally, the stability region of the SC can be defined as:
F={z|ale<li=1,....7,cle <1,bTu <1,0Tu <1}

Given the linearized system of equations (see Equation
with the set of constraints I', we need to solve the minimiza-
tion problem in Section[5.]to obtain K and Q. Finally, the
SC has dynamics u = Kz and the stability region can be
derived as R = {S | 2TQ 1z < 1}.

6.2. Restarting in Action

The goal of this experiment is to demonstrate that the
proposed switching and recovery method is applicable to a
real safety critical CPS. We used a minimal implementation
of the design with SC on a dedicated processor, a remote
operator as CC, and a manual signal as the source of
restart. Our testbed consists of an Align T-Rex 450 radio-
controlled helicopter equipped with a ArduPilot APM 2.6
board [26] as the main unit and a Bavarian Demon board
[27] as the rescue unitﬂ A Futaba FSU-2 28] is utilized as
the failsafe switch (FS).

In this test, during normal operation, the restart mod-
ule generates a valid PWM signal, which instructs the F'S to
forward CC-generated commands. When the restart com-
mand from the ground control is received, an interrupt is
triggered on the main unit that initiates a reset. During the
reset, the PWM value in input to the FS becomes invalid,
triggering a switch to the rescue unit. After the restart
is completed, the main unit outputs a valid PWM pulse
again, and control is handed back to the CC. The trace
recorded from the helicopter during the flight is depicted
in Figure[3] The first and second graphs, depict the altitude
and the level angles of the helicopter, respectively. The
third graph shows the time frame during which the SC was
active. Even though the time required to restart the APM
was only 85 ms, we manually forced the system to stay
longer in the booting mode for evaluation purposes. The
video recorded for this experiment can be found at [29).
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Figure 3: Altitude and the level angles of the helicopter during
an in-flight restart
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3. It is important to mention that the Bavarian Demon board is
not a fully programmable board but it is essentially a tunable PID
controller. This unit can easily be replaced with a PID controller
implemented on a general purpose micro-controller.



6.3. Evaluation with the Simulated Model

For further analysis and testing of situations that are
difficult to implement on the real system, we conducted our
analysis using the validated model.

6.3.1. Progress Analysis. Restarting the platform im-
pacts the system’s progress towards the CC goal. The two
parameters that determine the impact are (i) the frequency
of restarts and (ii) time required to complete the restart.
Figure 4] depicts the normalized comparison for various
restart intervals and reboot lengths for a helicopter system
where the CC is designed to keep the helicopter at a fixed
altitude and forward velocity. As seen in Figure [d] cases
with a small ratio of reboot length to restart interval have
an almost negligible progress slowdown.
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Figure 4: Impact of the restart interval and restart length on
the control performance of system.

Next, we measured the time requirements for restarting
three embedded platforms used in various applications:
Freescale MPC564xL board (designed for automotive ap-
plications), Ardupilot APM 2.6 (commonly used in low-
end UAVs) and the Intel Edison board (designed to target
Internet-of-Things applications). The restart times mea-
sured for these platforms are presented in Table [T}

| Platform Name | OS Type [ Restart Time |
Freescale MPC564xL | ERIKA RTOS 45 ms
Ardupilot APM 2.6 ArdOS 80 ms
Intel Edison Yocto Linux 2031 ms

TABLE 1: Time required for full system restart

The conclusion that arises from the results in Figure [4]
and Table[T] is that the impact of restarts on the progress
of an embedded system with a typical fault rate can remain
negligible. It follows that, if specific properties about the
state of the system can be inferred after a reset, controlled
periodic resets could also be introduced as a low-overhead
strategy to “refresh” a live CPS and prevent the occurrence
of unexpected faults.

6.3.2. Stabilizable Region Comparison. In this exper-
iment, we compare the size of the operational region of
the helicopter system under the original LMI-based Sim-
plex 7, face-lifting real-time reachability and our
proposed modified RTR.

LMI-Simplex and RTR techniques cannot provide guar-
antees on the overrun constraints. Thus this experiment
only considers hard constraints. The projection of the sta-
bilizable region, for z and Z is shown in Figure[5] In order to

demonstrate an adverse case behavior, we have changed the
projection plane such that we can observe the behavior near

the boundaries of the stability region. In Figure [5(a)]
and the level angles of helicopter were increased,

which resulted in a reduction in the size of the stability re-
gion. As seen in the figures, when only the hard constraints
of the system are considered, the obtained stability region
via face-lifting real-time reachability and our modified RTR
are identical. These figures, highlight the benefit of using
real-time reachability and modified real-time reachability
by the larger provably safe recoverable region (yellow).
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Figure 5: Projection of stabilization region. Blue: LMI-Simplex;
yellow: RTR and modified RTR; and red: unrecoverable. In all
the figures we have ¢ =0, 0 =0, ¢ =0.
6.3.3. Modified RTR with Overrun Constraints.
Next, we demonstrate that providing further guarantees
on the overrun constraints can limit the operational region
of system. The overrun constraint considered here was
formulated in Section [B.Il Whether the overrun constraints
is satisfied depends not only on the current state, but also
on the trajectory followed by the system. Therefore, we
project the stabilization region under increasing levels of
accumulated stress over the past time window. Figures
to depict the stability regions of the system from a
given state for different values of accumulated stress. From
left to right, top to bottom, the considered amount of accu-
mulated stress is 12, 14, 14.5 and 15. It can be noted that
in Figure [6(a)] classic face-lifting RTR and our modified
RTR produce an identical region because 3 seconds are
sufficient for the SC to reduce v, = 2 below the 3 m/s
threshold. As the accumulated stress increases, the size of
the green region decreases. Finally, in Figure where
the accumulated stress is already 15, the Z = 3 boundary
cannot be crossed at any time.

7. Conclusions

In this paper, we enable continuously-actuated CPS
using Simplex design to (i) to recover from the faults in
a timely manner by restarting at runtime. Moreover, (ii)
we propose a novel technique to guarantee a more complex
category of safety constraints with a temporal aspect. And,
(iii) through a proof-of-concept minimal implementation on
a small unmanned helicopter and simulation-based system
modeling, we show the effectiveness of proposed recovery
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Figure 6: Blue: LMI-Simplex; yellow: RTR; green: modified
RTR; and red: unrecoverable. Yellow: only hard constraints
satisfied. Green: both overrun and hard constraints satisfied.

architecture under the assumed fault model. In the future
we plan to investigate alternative real-time reachablity al-
gorithms such as backward reachability analysis which
allows for near real-time verification of safety properties.
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